沈奇也没有在数论问题耶斯曼诺维奇猜想上,给予欧叶技术细节上的提示。
因为欧叶立下了g,她要独自完成耶斯曼诺维奇猜想的证明。
“量子物理中的许多概念全然不同于经典物理,只有一点是相同的,不管量子物理还是经典物理,其中的数学语言通用。”沈奇自言自语,似乎找到了一丝灵感。
“耶猜,正整数解,卢卡斯数偶。”欧叶喃喃细语,她的灵感出现了。
“我想到了一种办法,在量子理论体系中,以微分方程为突破口,建立一种新的函数表达式,它是一道桥梁,最终连接到黎曼zeta函数素数分布的理论体系!”沈奇被这个神来之笔惊艳到了,大呼痛快,终于找到方向性的解决办法了,接下来要做的是推导和验证。
“卢卡斯数偶,标准分解,代数整数环!”欧叶在今夜状态神勇,她知道该如何证明耶斯曼诺维奇猜想了!
同一间书房,两人研究的课题完全扯不上关系,这并不妨碍他们各干各的,在各自的课题上取得研究进展。
沈奇确定了黎曼定理+量子密钥的研究方向性之后没过几天,纽约大学柯朗研究所来电,邀请沈奇赴柯朗研究所参加一场学术交流会,主题是“黎曼定理及黎曼zeta函数素数分布理论体系的应用”。
普林斯顿数学系是基础数学的圣殿,纽约大学柯朗研究所是应用数学的中心。
沈奇接受邀请,来到了纽约大学柯朗研究所。
柯朗研究所的所长热情接待了沈奇,随后由“黎曼定理应用研究小组”与沈奇开展具体的学术交流,组长是美国应用数学家凯文-斯塔里。
凯文-斯塔里教授是应用类的全才,他拥有数学博士及通信工程博士学位,在计算机科学、材料学方面也有较深造诣。
会议室里坐了四人,沈奇、斯塔里以及斯塔里的两位助手。
斯塔里说到:“沈教授,我们黎曼定理应用研究小组的全体成员都在这里了,让我们进入今天的主题吧。”
开什么玩笑,你们就三个人研究黎曼定理的应用?太少了吧。沈奇觉得斯塔里不老实,根据国际惯例,从事应用研发的研究团队人数往往多于基础理论研究。